18 research outputs found

    Thermo-Diffusion Effects of a Stagnation Point Flow in a Nanofluid with Convection using the Adomian Decomposition Method

    Get PDF
    The Thermo-diffusion solution effects a stagnation point flow of a nanofluid with convection using. Adomian Decomposition Method (ADM) is presented. The Partial differential equation representing the problem was reduced to an ordinary differential equation by introducing some similarity transformation variables. The transformed equations were solved using the ADM and the results were compared with existing results in the literatures. There is a good agreement between the method and the existing one, which indicate reliability of the method. The physical parameters that occurred in the solutions such as magnetic parameter, thermal Grashof numbers, concentration Grashof numbers, nano Lewis number, velocity ratio, Prandtl number were varied to determine their respective effects. It was observed that when the wall velocity is higher than the free stream velocity, the fluid velocity drop and rises when velocity at free stream is higher than the wall velocity .&nbsp

    Analytical Solution of Unsteady Boundary Layer Flow of a Nanofluid Past a Stretching Inclined Sheet With Effects of Magnetic Field

    Get PDF
     Flow of a nanofluid in a boundary layer in an inclined moving sheet at angle  is considered analytically. The Mathematical formulation consists of the Magnetic parameter, thermophoresis, and Brownian motion. Previously published work considered convective boundary condition. The present study considered an inclined stretching sheet at angle in one dimension and considered thermal conditions of non convective heating and heat flux. Solutions to  momentum,  temperature and concentration distribution depends on seven parameters, Magnetic parameter M, Lewis number Le, Prandtl number Pr, thermophoresis parameter Nt, the Brownian motion parameter Nb, unsteady parameter c and Grashof numbers Gr and Gc. The non linear coupled Differential equations were solved using the improved Adomian decomposition method and a good agreement was established with the numerical method (Shooting technique). Analytical result is also presented graphically to illustrate the effect of the earlier listed parameters on Momentum, temperature and nanofraction boundary layers. Momentum boundary layer increases with increase in Grashof numbers, angle of inclination and unsteady parameter..Keywords— Adomian Decompostion Method (ADM), Nanofluid, Inclined sheet, magnetic field effects, Numerical Method (NM).

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Aqueous Leaf Extract of Heliotropium Indicum Ameliorates Hyperglycaemia-Induced Tissue Complications in Albino Rats

    No full text
    Background: Heliotropium indicum is used by traditional medical practitioners in North Central Nigeria for the management of ailments including diabetes. However, the folkloric use of H. indicum as antidiabetic has been asserted, but its roles on the hyperglycemia-induced organ-specific complications are not yet scientifically proven. Thus, ameliorative effect of aqueous leaf extract of H. indicum on selected toxicological parameters in hyperglycaemic rats was investigated in this study. Methods: Twenty-five rats were randomized into five groups. The study was carried out at the Animal Holding Unit, Biochemistry Department, University of Ilorin in 2013. Four groups were intraperitoneally administered singly with 150 mg/kg b.wt of alloxan to induce hyperglycemia. The normal control (NC) and hyperglycaemic control (HC) groups were administered 1 ml distilled water, while the reference group (HR) were administered 14.2 mg/kg b.wt of metformin and the test groups, H30 and H75 were administered 30 and 75 mg/kg b.wt, the extract respectively for fourteen days. Results: The significantly increased (P<0.05) serum concentrations of tissue membrane bound enzymes (ALT, AST, ACP and ALP), direct and total bilirubin, urea and creatinine in HC indicating compromised tissue structures and functions in HC were attenuated. The significantly (P<0.05) reduced serum total protein, globulin and albumin in HC were significantly increased by both doses of the extract. The ameliorative role of the extract at the test doses was supported by the histological assessment of liver and kidney of the animals. Conclusion: Aqueous leaf extract of H. indicum can be explored at the ethnobotanical dose of 30 and 75 mg/kg b.wt on the management of some of the tissue-specific disarrays associated with diabetes

    The Need to Prioritize Prevention of Viral Spillover in the Anthropopandemicene: A Message to Global Health Researchers and Policymakers

    No full text
    Increased anthropogenic activities including changes in land use and unrelenting ecosystem services related to animal husbandry, wildlife trade, and deforestation are driving the emergence of viral zoonosis. This is primarily due to human–animal interaction which is facilitating the spillover of viral zoonotic pathogens from animals (domestic and wildlife) to humans that could result in epidemics or pandemics. Scientific reports so far have revealed that viral epidemics and pandemics in recent years such as H1N1 Swine Influenza, H5N1 Avian Influenza, Ebola, Zika, Severe Acute Respiratory Syndrome (SARS), and the ongoing SARS-CoV-2 were all zoonotic, and their emergence has been linked with spillover events arising from human–animal interaction. This increased interaction and the increased spillover event could facilitate future pandemic risk, and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, “IPBES”, has declared this “the era of pandemics”. Furthermore, since future pandemics would be triggered by anthropogenic activities, we have called this “anthropopandemicene”, i.e., an era of pandemics driven by anthropogenic activities. To minimize the risk of future pandemics, it is important to prioritize the prevention of viral spillover events. Here, we outline five priority areas for global health researchers and policymakers. These areas include improvement of biosecurity at livestock farms, imposing a moratorium or strictly banning wildlife trade that poses a public health risk, conservation of biodiversity by halting deforestation, investing in community-based research for infectious disease control, and strengthening community healthcare systems in precarious ecosystems and infectious diseases hotspots. Finally, we acknowledge the efforts of other renowned global and legally binding frameworks such as IHR, the Paris Agreement, and CITES with regard to addressing the public health risk of infectious diseases, and we provide recommendations for their improvement

    The Need to Prioritize Prevention of Viral Spillover in the Anthropopandemicene: A Message to Global Health Researchers and Policymakers

    No full text
    Increased anthropogenic activities including changes in land use and unrelenting ecosystem services related to animal husbandry, wildlife trade, and deforestation are driving the emergence of viral zoonosis. This is primarily due to human&ndash;animal interaction which is facilitating the spillover of viral zoonotic pathogens from animals (domestic and wildlife) to humans that could result in epidemics or pandemics. Scientific reports so far have revealed that viral epidemics and pandemics in recent years such as H1N1 Swine Influenza, H5N1 Avian Influenza, Ebola, Zika, Severe Acute Respiratory Syndrome (SARS), and the ongoing SARS-CoV-2 were all zoonotic, and their emergence has been linked with spillover events arising from human&ndash;animal interaction. This increased interaction and the increased spillover event could facilitate future pandemic risk, and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, &ldquo;IPBES&rdquo;, has declared this &ldquo;the era of pandemics&rdquo;. Furthermore, since future pandemics would be triggered by anthropogenic activities, we have called this &ldquo;anthropopandemicene&rdquo;, i.e., an era of pandemics driven by anthropogenic activities. To minimize the risk of future pandemics, it is important to prioritize the prevention of viral spillover events. Here, we outline five priority areas for global health researchers and policymakers. These areas include improvement of biosecurity at livestock farms, imposing a moratorium or strictly banning wildlife trade that poses a public health risk, conservation of biodiversity by halting deforestation, investing in community-based research for infectious disease control, and strengthening community healthcare systems in precarious ecosystems and infectious diseases hotspots. Finally, we acknowledge the efforts of other renowned global and legally binding frameworks such as IHR, the Paris Agreement, and CITES with regard to addressing the public health risk of infectious diseases, and we provide recommendations for their improvement

    Personality traits as key determinants of COVID-19 vaccine uptake among healthcare workers in Nigeria

    No full text
    Background: The coronavirus disease 2019 (COVID-19) pandemic has posed a significant global challenge, necessitating the development and administration of vaccines to halt its spread. Nevertheless, there is limited information on the predictors, patterns, and personality variables influencing COVID-19 vaccine uptake among Nigerian health-care workers (HCWs). Aim: The study set to assess level of factors including personality factors that influence acceptance of the COVID-19 vaccines among.HCWs in Nigeria. Materials and Methods: From August 9 to October 11, 2021, a web-based, cross-sectional survey was conducted on 300 HCWs in Nigeria, aged 19 and above, with social media access and English language proficiency. Descriptive statistics, Chi-square, and binary logistic regression were used to analyse the data on the SPSS version 20. Results: The findings revealed that while 64% of those who participated in the study received the first dosage of the COVID-19 vaccine, only 48.3% returned for the second dose. The impression of heightened susceptibility to contracting COVID-19 was the primary reason for vaccination uptake. Although education level was associated with vaccination uptake, it did not predict it independently. The age distribution, agreeableness, conscientiousness, and high vulnerability as a rationale for receiving a vaccine were all the independent predictors of vaccine uptake. Conclusion: This study reveals that despite their role as vaccination advocates, HCWs can exhibit hesitancy toward novel vaccines. To increase vaccine uptake among HCWs and the general population, it is crucial to recognise the factors that influence vaccine acceptance among them, including individual personality variables, and incorporate this understanding into vaccination promotion programs

    Global Environmental Health Impacts of Rare Earth Metals: Insights for Research and Policy Making in Africa

    No full text
    The rise of globalization and industrialization has driven the demand for rare earth metals (REMs). These metals are widely used in various sectors of the global economy with various applications in medicine, renewable energy, electronics, agriculture, and the military. REMs are likely to remain an important part of our global future, and, as production increases, areas contaminated by REMs are expected to expand over the coming decades. Thus, triggering significant adverse environmental, animal, and human health impacts. Despite increased attention on REMs outside China in recent years, there are limited studies exploring REM production, deposits, and associated health impacts in the African context. Proper mine management, adequate safety protocols, sustainable processing methods, and waste handling systems have been identified and proposed globally; however, the nature and scale of implementing these management protocols on the African continent have been less clear. Therefore, planetary health-centered solutions are urgently needed to be undertaken by researchers, policy makers, and non-governmental actors in Africa and across the globe. This is with the overarching aim of ensuring eco-friendly alternatives and public health consciousness on REM exploitations and hazards for future generations to come

    Preventing the Next Pandemic through a Planetary Health Approach: A Focus on Key Drivers of Zoonosis

    No full text
    The ever-increasing global health impact of SARS-CoV-2—the etiological agent of coronavirus disease 2019 (COVID-19)—coupled with its socio-economic burden, has not only revealed the vulnerability of humanity to zoonotic pathogens of pandemic potential but also serves as a wake-up call for global health communities to rethink sustainable approaches towards preventing future pandemics. However, since the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) convened experts have declared that future pandemics are likely to be zoonotic in origin, it is imperative that we understand the key drivers of zoonosis such as biodiversity loss, climate change, wildlife consumption, and population mobility, as well as the scientific evidence underpinning them. In this article, we underscore the correlations of these drivers with the emergence and re-emergence of zoonosis. Consequently, we highlighted the need for multidisciplinary collaboration under the planetary health approach between researchers across the fields of environmental and human health to fill the knowledge and research gaps on key drivers of zoonosis. This is to prevent or limit future pandemics by protecting the natural systems of the Earth and its resources and safeguarding human and animal health
    corecore